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Abstract 

Neuromodulators such as dopamine have been shown to modulate short-term synaptic plasticity 
(STP). Here we propose that the neuromodulation of STP provides a general mechanism to scale 
neural dynamics and motor outputs in time and space. We trained RNNs that incorporated STP 
to produce complex motor trajectories—handwritten digits—with different temporal (speed) and 
spatial (size) scales. The learned dynamics underwent temporal and spatial scaling when higher 
synaptic release probabilities corresponded to higher speed/size. Neuromodulation of STP 
enhanced temporal or spatial generalization compared to weight modulation alone. The model 
accounted for the data of two experimental studies involving flexible sensorimotor timing. Our 
results address a long-standing debate regarding the role of dopamine in timing and predict novel 
mechanisms by which dopamine may slow down neural dynamics and thus slow “clock” speed. 
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INTRODUCTION 

A universal feature of motor behavior is the ability to flexibly adjust the temporal and spatial scale 
of motor outputs. In the temporal domain, it is possible to produce very similar motor output 
patterns at different speeds or overall durations (Cicchini et al., 2012; Hardy et al., 2018; 
Remington et al., 2018). For example, people can flexibly control the tempo of a musical piece or 
the duration it takes to sign their names by altering their writing speed. Analogously, in the spatial 
domain, we can also flexibly change the size of one's handwriting depending on the writing 
surface area available (Harpaz et al., 2014; Rosenbaum, 2010). Similarly, in the sensory timing 
domain, the brain can not only distinguish between different intervals but the encoding of interval 
length can be flexibly modulated by a range of factors, including dopamine levels (Buhusi and 
Meck, 2002; Drew et al., 2003; Soares et al., 2016). 

It is increasingly clear that motor control and its spatial and temporal flexibility, are in part 
governed by the neural dynamics of recurrent neural networks (Churchland et al., 2012; Crowe 
et al., 2014; Hennequin et al., 2014; Merchant et al., 2015; Saxena et al., 2022; Stroud et al., 
2018; Vyas et al., 2020), suggesting that the neural dynamics of recurrent neural networks 
themselves may undergo transformations that underlie both temporal and spatial scaling. 
However, the neural circuit mechanisms underlying flexible temporal and spatial transformations 
remain largely unknown. Some neurocomputational models have demonstrated that it is possible 
to temporally scale RNN dynamics—that is, speed up and slow down the speed at which neural 
dynamics unfolds—by providing a “speed” input (Hardy et al., 2018; Remington et al., 2018; 
Saxena et al., 2022; Stroud et al., 2018; Wang et al., 2018) or adjusting the neural input-output 
gains(Lindén et al., 2022; Stroud et al., 2018). However, the mechanisms underlying spatial 
scaling of RNN dynamics, that is, the amplitude of the neural trajectories, remains mostly 
unaddressed, but see(Lindén et al., 2022).  

Here we propose a novel and biologically inspired mechanism based on the neuromodulation of 
STP, to flexibly govern both the temporal and spatial scales of RNN dynamics and sensorimotor 
behaviors. STP refers to a universal form of use-dependent synaptic plasticity that operates on 
the subsecond time scale (Abbott and Regehr, 2004; Motanis et al., 2018; Zucker and Regehr, 
2002). Despite its presence at almost all synapses in the brain, the computational functions of 
STP remain poorly understood. One experimentally characterized feature of STP is that it can be 
flexibly modulated by neuromodulators such as dopamine (Chiu et al., 2010; Gao et al., 2001; 
Gao et al., 2003; Kroener et al., 2009; Leyrer-Jackson and Thomas, 2018; Seamans et al., 2001a; 
Seamans et al., 2001b; Tecuapetla et al., 2007; Tritsch and Sabatini, 2012). Specifically, 
neuromodulators can alter the temporal profile of STP by governing release probability: enhancing 
initial release will more rapidly exhaust neurotransmitter vesicles from the readily releasable pool 
and favor short-term depression, in contrast, decreasing release probability can decrease short-
term depression and favor short-term facilitation.  

Even though STP is universally present at cortical synapses, most neural network models do not 
incorporate STP (for exceptions see (Buonomano and Merzenich, 1995; Masse et al., 2019; 
Mongillo et al., 2008; Murray and Escola, 2017)). And to the best of our knowledge, no previous 
neural network models have examined the computational role of the neuromodulation of STP. 
Here we demonstrate that the incorporation of STP, and its neuromodulation, into RNN models 
provides a powerful and flexible mechanism to temporally and spatially modulate RNN dynamics 
and thus sensorimotor control. We show that neuromodulation of STP accounts for experimental 
results on scaling tasks (Remington et al., 2018; Soares et al., 2016), and establish that while 
conventional RNNs can learn to temporally and spatially scale their dynamics, the incorporation 
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of STP significantly enhances the ability of networks to generalize across temporal and spatial 
scales. Our results provide a novel hypothesis as to why synapses may exhibit STP, and provide 
a novel computational mechanism for unified spatial and temporal control of sensorimotor 
behavior.  

RESULTS  

Firing-rate-based RNN models have successfully been used to capture neural dynamics of 
cortical circuits and account for how biological neural networks can perform a range of complex 
cognitive tasks (Chaisangmongkon et al., 2017; Laje and Buonomano, 2013; Mante et al., 2013; 
Murray et al., 2017; Sussillo and Abbott, 2009). With a few exceptions (Barak and Tsodyks, 2014; 
Masse et al., 2019), these RNN models generally do not incorporate STP. Here we incorporate 
STP in all the synapses of the RNN using the standard implementation composed of three 
variables(Markram et al., 1998): U, which can be interpreted as initial release probability or 

proportion of vesicles released from the readily-releasable-pool; x, the time constant of recovery 

from depression; f, the time constant of facilitation (Fig. 1a). We further implemented 

neuromodulation of STP via a factor  that modulated U. This factor  captures the level of a 
neuromodulator such as dopamine at the beginning of a trial. By modulating the U in STP through 
α, the STP can switch from short-term depression with high U values to short-term facilitation with 
low U values (Fig. 1b). 

Each RNN was trained to produce ten complex motor trajectories—handwritten digits 0-9—in 
response to one of ten brief inputs. In the temporal scaling task (Fig. 1c), RNNs were trained to 
produce each digit at a fast or slow speed, corresponding to a total duration of 1 or 1.5 s, 
respectively. The different speeds were cued by the values of α. In principle, α can control the 
speed of the output by higher values (0.9) cueing faster speeds and lower values (0.8) slower 
speeds (which we will refer to as the congruent condition); or conversely by higher and lower 
values cueing slower and faster speeds, respectively (incongruent condition). In both the 
congruent (Fig. 1d) and incongruent (Extended Data Fig. 1a) conditions, RNNs can learn the 
temporal scaling task equally well, as quantified by the speeds of trained output trajectories, which 
is 1.5 times faster at α = 0.9 than α = 0.8 in the congruent condition and vice versa for the 
incongruent condition (Fig. 1e). Training to criterion on the temporal scaling task was successful 
across a diverse range of hyperparameters including the mean time constants of the depression 
and facilitation, the pairing of α levels and scaling factors (Extended Data Fig. 2a-c). 

For the spatial scaling task RNNs were trained to generate digits with the same duration, but with 

different spatial scales (1x and 1.5x). As in the temporal scaling task, the relationship between  

and the scaling factor could be congruent (0.9/0.8→1.5x/1x) or incongruent (0.9/0.8→1x/1.5x) 
(Fig. 1f). In both the congruent (Fig. 1g) and incongruent (Extended Data Fig. 1b) conditions 
RNNs can learn the spatial scaling task well, as quantified by the Euclidian distance traveled by 
the output trajectories, which is 1.5 times more at α = 0.9 than α = 0.8 in the congruent condition 
and vice versa for the incongruent condition (Fig. 1h). Again, the training for the spatial scaling 
task was robust across a diverse range of hyperparameters (Extended Data Fig. 2d-f). 

Although RNNs can learn equally well in both the congruent and incongruent conditions, the 
number of epochs needed to reach the same criterion for the congruent was significantly lower 
than that for the incongruent conditions in both the temporal and spatial scaling tasks (Extended 
Data Fig. 1c). This implies that the congruent condition may offer intrinsic computational 
advantages (see below). 
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These results demonstrate that in principle, the α levels, which modulate STP through the initial 
“release ratio” can control either temporal or spatial scales, under both congruent and incongruent 
conditions. These results, however, do not address the more important question of how temporal 

and spatial scaling generalizes to novel values of . 

  

Congruent modulation of STP generalizes better to novel scales in both temporal and 
spatial scaling tasks 

To test how well temporal and spatial scaling generalizes to novel values of α, we tested the RNN 
performance under interpolated (α=0.8-0.9) and extrapolated (α<0.8, α>0.9) conditions by varying 
α values uniformly from 0.95 to 0.75 in both tasks. Optimal generalization would consist of output 

patterns that scaled linearly in time/space with . For instance, in the congruent temporal scaling 
task, α = 0.85 should produce an output duration of 1.25 s, and α = 0.95 an output duration of 

Fig. 1: Temporal and spatial control of motor trajectories through neuromodulation of STP. a 
Schematic of the RNN with 80% excitatory (cyan) and 20% inhibitory (red) units. Transient activation 
of either of 10 inputs triggers the production of a digit (from 0 to 9). STP was implemented through 
the depression variable (x) and facilitation variable (u). For each trial, the constant U was scaled by 
α to signal temporal or spatial scale. b, Example of neuromodulation of STP. In the extreme, 

different values of U can result in dramatic short-term depression or facilitation. A train of 20 Hz 
stimuli is delivered to the synapse, and τf and τd are both 1 s. c, Schematic of the temporal scaling 
task. For each trial, α was either 0.9 or 0.8 for all units, corresponding to a given digit production with 
a duration of 1 s and 1.5 s, respectively in the congruent condition, and 1.5 s and 1 s in the 
incongruent condition. The size of the target was the same for two α levels. d, Example output 
traces for all 10 digits under α = 0.9 (top) and α = 0.8 (bottom) for the congruent temporal scaling 
condition. e, Summary of the output speed (proportional to duration) averaged across digits under 
different α levels for the congruent (left) and incongruent (right) conditions for the temporal scaling 
task. Note that the speed under α = 0.9 case is around 1.5 times that of 0.8 in the congruent 
condition, and vice versa for the incongruent condition (n = 20 RNNs; P< 0.0001 two-sided Wilcoxon 
signed-rank test). f, Schematic of the spatial scaling task. For each trial, α was either 0.9 or 0.8 for 
all units corresponding to a scale of 1.5 and 1, respectively, in the congruent condition and 1 and 
1.5, respectively, in the incongruent condition. The duration of the target was always 1 s. g, Example 
output traces for all 10 digits under α = 0.9 (top) and α = 0.8 (bottom) for the congruent spatial 
scaling task. h, Summary of the output distance traveled averaged across digits under different α 
levels for the congruent (left) and incongruent (right) conditions for the spatial scaling task. Note that 
the distance under α = 0.9 is around 1.5 times that under 0.8 for the congruent condition, and vice 
versa for the incongruent condition (n = 20 RNNs; P< 0.0001 two-sided Wilcoxon signed-rank test). 
Boxplot: central lines, median; bottom and top edges, lower and upper quartiles; whiskers, extremes; 
red cross, outliers. 
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0.75 s. We quantified generalization as the RMSE of the actual outputs and the linearly scaled 
optimal targets. For the temporal scaling task RNNs generalized much better under the congruent 
compared to the incongruent condition (Fig. 2a,c). Additionally, the speed of the output trajectory 
scaled in a much more linear factor in the congruent condition (Fig. 2d). In the spatial scaling task, 
the generalization was also significantly better (but not as dramatically so) in the congruent 
condition (Fig. 2b,e-f).  

Although in both the congruent and incongruent conditions RNNs can be trained to the two target 
scales equally well, the generalization results indicate that the congruent relationship may be 
inherently better at modulating RNN dynamics and thus temporal and spatial scaling of output 
patterns.  

 

Temporal and spatial profile of recurrent dynamics 

To begin to understand how neuromodulation of STP drives the scaling of RNN dynamics across 
temporal and spatial scales, we first analyzed the dynamics of the recurrent network under 
different values of α. We plotted the normalized population activity sorted by latency at different 
α values for congruent and incongruent conditions. For the temporal scaling task, the sequential 

Fig. 2: Generalization to novel scales is better in the congruent condition in both the temporal 
and spatial scaling tasks. a, Example output traces of digit 0 under novel α levels for congruent (top) 
and incongruent (bottom) conditions in the temporal scaling task. Gray arrows denote the α level used 
for training. b, Similar to a but for the spatial scaling task with congruent (left) and incongruent (right) 
conditions. Color codes different α levels. c, Summary of the generalization performance for the 
temporal scaling task as measured by RMSE between the actual output and targets linearly warped 

according to the corresponding α level. Note that RMSE at the novel (untrained)  values for the 
congruent (green) condition is significantly lower than that for the incongruent (orange) condition (n = 
20 RNNs; two-way ANOVA with mixed-effect design, F1,38  = 707.7, P < 10-25). d, Summary of speed 
versus α levels for the congruent (green) and incongruent (orange) conditions in the temporal scaling 
task. Note that the relation for the congruent condition was more linear. e, Same as c but for the spatial 
scaling task. RMSE for the congruent (blue) condition was significantly lower than that for the 
incongruent (purple) condition (n = 20 RNNs; two-way ANOVA with mixed-effect design, F1,38  = 52.0, 
P < 10-7). f, Same as d but for distances with the congruent (blue) and incongruent (purple) conditions 
in the spatial scaling task. Data were presented as mean ± SEM (light overlay). 
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order of the dynamics at α = 0.9 in the congruent condition preserved to dynamics at α = 0.8 but 
shifted to the left (Fig. 3a left, emphasized by the red line at 0.5 s). Visually, in the incongruent 
condition, there was a potential distortion of the sequence between α values of 0.9 and 0.8 (Fig. 
3a right). This potential distortion can also be seen by plotting and comparing the two congruent 
RNN trajectories (non-normalized) and two incongruent trajectories in PCA space: the α = 0.9/0.8 
trajectories appear to be more parallel in the congruent condition but not so in the incongruent 
condition (Fig. 3b). Visual inspection of the congruent and incongruent sorted neurograms in the 
spatial scaling task (Fig. 3c) are not as distinct as the temporal scaling task, in the sense that 
sequential order of the dynamics preserved across two α levels in both congruent and incongruent 
conditions. However, the non-normalized RNN trajectories in PCA space (Fig. 3d) revealed the 
distance traversed by the dynamics at α = 0.9 is larger than at α = 0.8. In other words, the size of 
the recurrent dynamics is ‘spatially larger’ at α = 0.9.  

To quantify the unified temporal and spatial (amplitude) scaling of the RNN trajectories, we 
developed three interrelated measures, Temporal Scaling Factor (TSF), Spatial Scaling Factor 
(SSF), and scale-specific index (SSI), all calculated from the same algorithm (schematized in Fig. 
3e). The algorithm searches for the best temporal (TSF) and spatial (SSF) warping factors of a 
template RNN dynamics (e.g., α = 0.9; exemplified by the one-dimensional trace r1) that best 
matches the comparison trajectory (e.g., α = 0.8; exemplified by trace r2). The Euclidean distance 
between r1 and r2 at the best warping of r1 (at TSF and SSF) is then normalized (see Methods) 
to obtain an SSI value. Intuitively, the lower the SSI, the better r2 can be fitted through warping 
r1 temporally by TSF and spatially by SSF. Applying these measures to the temporal scaling task, 
we found that the TSF for the congruent condition is significantly higher than the incongruent 
condition (Fig. 3f, left). The SSI was also significantly lower (Fig. 3f, right), indicating that 

compared to the incongruent RNN trajectories, the congruent RNN trajectories at =0.8 was a 

linearly warped version of the =0.9 trajectory. Note that the SSF for the temporal scaling task is 
below 1 (Fig. 3d, middle), indicating that the faster trajectory is accompanied by higher amplitude 
firing rates of the RNN units.  

Quantification of RNN trajectories in the spatial scaling task reveals that the SSF for the congruent 
condition is significantly lower than that for the incongruent conditions (Fig. 3g, middle) and that 
as expected the TSF for the spatial scaling task is close to 1 (Fig. 3g, left), which is consistent 
with the visual inspection in Fig. 3d. The low values of the SSI for both the congruent and 

incongruent trajectories indicate that in both conditions the =0.8 trajectories are linearly warped 

versions of the  = 0.9 RNN trajectories.  

To further corroborate the above measures we performed time and unit shuffled controls 
(Extended Data Fig. 3), in which shuffling resulted in significantly higher SSI suggesting an 
independent relationship between the two shuffled dynamics. We performed the same analyses 
based on the temporal profile of the synaptic efficacy as defined by the product of x and u in the 
STP model. This revealed similar temporal and spatial scaling profiles as the dynamics of activity 
(Extended Data Fig. 4).  

In sum, in the temporal scaling task, the congruent neuromodulation of STP produced temporal 
scaling of output trajectories, by temporally scaling RNN trajectories. Importantly, for temporal 
scaling, there is a clear asymmetry between creating parallel RNN trajectories that unfold at 
slower speeds by either decreasing initial release strength (congruent) or increasing initial release 
strength (incongruent). In the spatial scaling task this asymmetry—i.e., the superior performance 
of decreasing initial synaptic strength to generate smaller output trajectories is less pronounced 
but still present.  
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Fig. 3: Temporal and spatial scaling of recurrent dynamics. a, Normalized recurrent population 
activity at α = 0.9 (top) and α = 0.8 (bottom) sorted according to the peak activity latency at α = 0.9 for 
congruent (left) and incongruent (right) temporal scaling task. For reference, the red dashed line 
denotes 0.5 s. b, Same as a but for spatial scaling task. c, Plot of the first three principal components 
of population activity at α = 0.9 (black) and α = 0.8 (dark red) for congruent (left) and incongruent (right) 
conditions in temporal scaling task. The color bar shows the code for time. d, Same as c but for spatial 
scaling task. e, Schematic of the calculation of the  Temporal Scaling Factor (TSF), Spatial Scaling 
Factor (SSF), and Scale-Specific Index (SSI). For two hypothetic neural trajectories (illustrated as one 
dimension here), r1 (black) and r2 (red), the goal of the algorithm is to find the best temporal and 
spatial (amplitude) scaling factors by which warping r1 provides the best match to r2. r1 is temporal 
warped by either linear interpolating or subsampling a range of candidate temporal scaling factors (tsf). 
For each time-warped dynamics, we further multiply it with candidate spatial scaling (amplitude) factors 
(ssf), resulting in a  grid of temporal-spatial warped dynamics of r1 (gray). Finally, the average 
Euclidian distance between these warped dynamics and r2 (light red traces on top) is computed. Thus, 
the distance is a function of tsf and ssf. The tsf and ssf leading to the minimal distance are defined as 
TSF and SSF respectively. The performance of the temporal-spatial profile was quantified by the SSI, 
which is the minimal distance at TSF/SSF divided by the distance between r2 and its mean (similar to 
the variance of r2). f, comparison of congruent and incongruent conditions for average TSF (left), SSF 
(middle) and SSI (right) across 20 RNNs in the temporal scaling task (n = 10 digits; P = 0.002, two-
sided Wilcoxon signed rank test for TSF, SSF, and SSI). g, Same as f but for spatial scaling task (n = 
10 digits; P = 0.002, 0.002 and 0.131, two-sided Wilcoxon signed rank test for TSF, SSF and SSI 
respectively). Boxplot: central lines, median; bottom and top edges, lower and upper quartiles; 
whiskers, extremes; red cross, outliers. 
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Mechanisms underlying the scaling of recurrent dynamics and output patterns 

To dissect the mechanisms underlying the differential scaling of RNN trajectories by congruent 
and incongruent neuromodulation of STP, we focused on the RNN state trajectories at α = 0.9 
and α = 0.8 (s1 and s2, respectively, in Fig. 4a). At any given time point in s1 and s2 with p12 
being the direction from s2 to s1, there is a velocity vector v1 and v2, respectively, that can be 
decomposed into the decay component (d1 and d2) and a recurrent component (rec1 and rec2). 
We defined the angle between rec2 and p12 as θ and the angle between rec2 and v1 as μ. 
Intuitively, for s1 to speed up compared to s2, as in the congruent temporal scaling task, we would 
expect the rec2 and v1 to point in a similar direction—with the angle between the two (μ) smaller 
than 90 degrees—to increase the drive on the v1 direction, and vice versa for the incongruent 
condition. On the other hand, for s1 to transition to a larger trajectory, we would expect the rec2 
and p12 to point in a similar direction—with the angle between the two (θ) to be smaller than 90 
degrees—in order to increase drive on the p12 direction.  

Indeed, for the temporal scaling task, the mean μ across time in the congruent condition is lower 
than 90 degrees, significantly lower than in the incongruent condition that is larger than 90 
degrees (Fig. 4b, left). θ in the congruent condition for the temporal scaling task is significantly 
lower than in the incongruent condition (Fig. 4b, right), which is consistent with the SSF in 
congruent conditions being slightly lower than in incongruent conditions (Fig. 3g, middle). In the 
spatial scaling task, θ in the congruent condition is significantly lower than in the incongruent 
condition (Fig. 4c, right), which is consistent with the results that SSF in the congruent spatial 
scaling task is significantly lower than in the incongruent conditions (Fig. 3g, middle). While μ in 
both congruent and incongruent spatial scaling tasks are close to 90 degrees, but with congruent 
conditions being slightly slower, which is also consistent with the TSF in congruent conditions 
being slightly higher (Fig. 3g, left).  

As shown in Fig. 3, SSFs of the recurrent dynamics in both the congruent and incongruent 
conditions are less than 1, which indicates that the size of the recurrent dynamics at α = 0.9 is 
larger than α = 0.8. The larger recurrent dynamics at α = 0.9 in the congruent spatial scaling task 
would be appropriate for generating larger output as the task requires. However, in the 
incongruent condition, this scenario would change so that a larger recurrent dynamics needs to 
generate a smaller output. This paradox exists for the temporal scaling task too, where the larger 
recurrent dynamics is meant to generate an output of the same size as the smaller one. The 
resolution to this apparent paradox can be understood using a light projection analogy (Fig. 4d). 
In light projection, to get a bigger shadow from a smaller trajectory, one can arrange the smaller 
trajectory within a smaller angle with the ground, the plane of the shadow. Analogously, the motor 
output is the projection of the recurrent dynamics onto the output space governed by the output 
weights. Thus, we would expect the angle between smaller recurrent dynamics (subspace of the 
first 2 PCs) and output space to be smaller than that between larger recurrent dynamics and 
output space. Indeed, the angle between recurrent space at α = 0.8 and the output space was 
slightly but significantly lower than that at α = 0.9 in the congruent temporal scaling task (Fig. 4e 
left) and incongruent spatial scaling task (Fig. 4f right). These differences were not as significant 
in the incongruent temporal scaling task probably due to the higher SSF (Fig. 4e right), or in the 
congruent spatial scaling task (Fig. 4f left) as one would expect (no space alignment required for 
pairing bigger recurrent dynamics with bigger output). Those findings are robust when quantifying 
the angles for higher dimensional recurrent space expanded by more PCs (Extended Data Fig. 
4). 
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Short-term plasticity enhances generalization and speeds up training 

The above results demonstrate that we can modulate the temporal or spatial scale by changing 
the initial synaptic release probability controlled by α. Although α controlled release probability U 
we didn’t directly address whether STP is actually contributing to the results. That is, does simply 
adjusting the synaptic release probability in the absence of STP (i.e., simply scaling all synaptic 
weights) result in similar performance? To address that question, we ran control simulations for 

RNNs without STP but still included a  term. Specifically, we fixed x at 1 and u at αU during the 

Fig. 4: Subspace analysis of the temporal and spatial scaling of RNN dynamics and output. a, 
Schematic of the decomposition analysis between recurrent activity states at α = 0.8 (s2, red curve) 
and α = 0.9 (s1, black). For a given time point on s2 (red dot) and its corresponding point (normalized 
time) on s1 (black dot) there are velocity vectors v2 (red arrow), and v1 (black arrow), respectively. v2 
can be decomposed into the recurrent component, rec2 (cyan arrow), and decay component d2 
(magenta arrow). θ denotes the angle between rec2 and p12 and μ denotes the angle between rec2 
and v1. b, The average angle μ (left) and θ across time in the temporal scaling task. μ is significantly 
lower for the congruent settings than for the incongruent setting (n = 20 RNNs; P < 10-7, two-sided 
Wilcoxon rank sum test), while θ is slightly, but significantly lower for the congruent settings than for 
the incongruent task as well (n = 20 RNNs; P < 10-6, two-sided Wilcoxon rank sum test) c, same as b 
but for spatial scaling task. θ is significantly lower for the congruent settings than that for the 
incongruent setting (n = 20 RNNs; P < 10-7, two-sided Wilcoxon rank sum test). while μ is slightly but 
significantly lower for the congruent settings than for the incongruent setting as well (n = 20 RNNs; P  
< 10-6, two-sided Wilcoxon rank sum test). d, Schematic of how recurrent dynamics with smaller (red 
solid) or larger (black solid) size can generate larger (red dashed) or smaller (black dashed) outputs 
in output space, respectively. e, Comparison of the angle between the planes of recurrent space (2 
PCs) and output space at different α levels for congruent (left) and incongruent(right) cases in the 
temporal scaling task (n = 20 RNNs; P< 0.001 and P = 0.263 for congruent and incongruent 
respectively, two-sided Wilcoxon signed-rank test). f, Same as e but for the spatial scaling task (n = 
20 RNNs; P= 0.062 and P < 0.0001 for congruent and incongruent respectively, two-sided Wilcoxon 
signed-rank test). Boxplot: central lines, median; bottom and top edges, lower and upper quartiles; 
whiskers, extremes; red cross, outliers. 
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whole trial. These modifications removed the STP dynamics but keep the overall magnitude of 
the connection weights at the same scale as the control. We then trained and tested the RNNs 
without STP doing the same task in the congruent condition as the standard model. Interestingly, 
the generalization performance for the RNNs without STP dramatically decreased in both the 
temporal (Fig. 5a,c) and spatial scaling tasks (Fig. 5b,c) compared to the RNNs with STP. 
Furthermore, STP dramatically speeded up training as shown by fewer training epochs needed 
to reach the same criterion (Fig. 5d). Thes results suggest that STP does indeed provide a novel 
mechanism to effectively scale temporal and spatial neural dynamics.  

  

Joint control of temporal and spatial scales, and shape via neuromodulation of STP 

Up to now, we have demonstrated that adjusting α can control either temporal or spatial scales 
separately. We next ask whether α jointly controls the temporal and spatial scale in a single RNN. 
To explore this possibility, we arbitrarily divided the recurrent units into two groups. One group 

receives a neuromodulatory signal that will control temporal scale by altering , and another group 

Fig. 5: STP enhances generalization performance and speeds-up learning. a, Example output 
traces of digit 0 under different α levels for congruent temporal scaling task with STP (top) and 
congruent condition without STP (bottom). Gray arrows denote the α level used for training. b, Same 
as a but for the spatial scaling task. Color codes for different α levels. c, Summary of the generalization 
performance by the average RMSE between output and the linearly scaled targets. Note that in both 

temporal (left) and spatial (right) scaling tasks the RMSE for the novel  levels for the RNNs with STP 
(green or blue) case was significantly lower than that for RNNs without STP (gray) (n = 20 RNNs; two-
way ANOVA with mixed-effect design, F1,38  = 1102.4, P < 10-28 and F1,38  = 556.3, P < 10-23 for temporal 
and spatial scaling task respectively). d, Comparison of the number of training epochs to reach criteria 
for RNNs with STP and without STP in temporal scaling task (left) and spatial scaling task right (n = 
20 RNNs; P < 10-7, two-sided Wilcoxon rank sum test for both tasks). Boxplot: central lines, median; 
bottom and top edges, lower and upper quartiles; whiskers, extremes; red cross, outliers. 
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receives a signal that controls spatial scale (Fig. 6a). RNNs can learn this task well as shown 
(Fig. 6b). And importantly, in this joint control task, RNNs can generalize well to all the 
combinations of novel α levels for the temporal and spatial scales supported by the speed and 
distance of the outputs (Fig. 6c). Note that speed progressively increases towards to the top left 
part of the speed plot, which corresponds to the fastest speed required to generate the largest 
output in the shortest time. Similarly, the distance 

progressively increases towards the bottom left part of the distance plot, which corresponds to 
the longest distance required to generate the largest output in the longest time. 

Fig. 6: Joint control of temporal and spatial scales in RNNs through differential modulation of 
α in distinct subpopulations. a, Schematic of unified control of temporal and spatial scale. The α 
level of 50% selected units controls temporal scaling, while the other half spatial scaling. b, Example 
output traces for digit 0 in four cases: short-large, short-small, long-large, and long-small. c, Summary 
of average speed (left) and distance (right) across different α levels. d, Schematic of encoding 
temporal and spatial scale, and digit identity through α. 50% units to signal digits identity, while half of 
the rest 50% units signal duration (25%) and spatial scale (25%). For a given digit, 20 randomly 
selected units (out of 400) were assigned α  = 0.6 among the digit population, while α = 0.9/0.8 were 
used for the temporal and spatial scaling as in the above model. e, Same as b but for the model in d. 
f, Same as c but for the model in d. 
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We next asked whether α can jointly control an additional task dimension: the output shape, i.e., 

the identity of the digit was cued by changing  in a subset of units rather than distinct inputs. To 
achieve this, we divided the recurrent units into three groups (50%, 25%, 25%): 50% for digit 

shape, 25% for temporal scale, and the rest 25% for spatial scale (Fig. 6d). The digit group was 

further divided into ten subgroups with the α of each set to 0.6 and the rest 1 to signal each of the 

ten digits (Fig. 6d). With this architecture, RNNs learned and generalize well to joint control of 

temporal and spatial scales while also cueing different digits with  (Fig. 6e,f). 

Although the two strategies for joint control—using either different inputs or α signaling for digit 
identity—exhibited similar learning and generalization performance, PCA plots revealed that 
using α signaling the digit seemed to lead to recurrent dynamics more similar across digits 
(Extended Data Fig. 6a). These visual results are further confirmed by the cross-digit correlations 
for the two strategies (Extended Data Fig. 6b, c). These findings suggest that similar output can 
be generated from different recurrent dynamical regimes, similar to what we observed in the 
congruent vs incongruent conditions. 

Neuromodulation of STP captures the temporal scale observed in two sensorimotor tasks 

For the analysis above, we mainly focused on how α can adjust the temporal and spatial scale in 
a motor control task—generating digit handwriting. To investigate whether modulating α can 
account for experimental funding on temporal scaling we simulated two experimental studies: one 
from rodents and another from non-human primates. First, we trained RNNs to solve an interval-
alternative-forced-choice task (IAFC) where rats needed to classify intervals as short or long 
(Soares et al., 2016). In this study optogenetically increasing dopamine levels selectively shifted 
the decision towards the short intervals (i.e., the psychophysics of long choice probability was 
shifted right). To replicate this experiment, we first trained RNNs to do the same interval 
discrimination task with a single α = 0.8 for all units (Fig. 7a). The RNNs can replicate the 
behavioral results as shown by the output traces for an example RNN (Fig. 7b) and the 
psychophysics curve of the long choice probability (Fig. 7c). We then sought to simulate the 
dopamine manipulation experiments in our model. Multiple studies have demonstrated that 
dopamine decreases the synaptic release probability in both excitatory and inhibitory cortical 
synapses (Chiu et al., 2010; Gao et al., 2001; Gao et al., 2003; Seamans et al., 2001b; Tritsch 
and Sabatini, 2012), we thus simulated dopamine levels in the IAFC task at either α = 0.9 or 0.7 
to capture low or high dopamine levels, respectively. Decreasing α from 0.8 to 0.7—which 
corresponds to increasing dopamine—shifts the psychophysics curve of the long choice 
probability to right, the same as the results of dopamine manipulation experiments, and vice versa 
for increasing α to 0.9 (Fig. 7d,e). These results are consistent with the congruent temporal 
scaling motor trajectory task, in the sense that in both cases, decreasing α slows down the 
recurrent dynamics, and thus slows down either the motor output in the motor trajectory task or 
sensory timing in the IAFC task resulting underestimating the input intervals.  

We next simulate an experimental task that used the Ready-Set-Go paradigm in monkeys. In this 
task, subjects perceive an initial interval demarcated by ready and set cues, and they have to 
produce a go response in which the set-go interval is the same as the ready-set interval. In this 
experimental study (Remington et al., 2018) there was an additional scaling cue, which 
determined if subjects were required to produce the exact ready-set interval (1x) or scale the 
interval by 1.5x. To simulate this flexible sensorimotor timing task, we trained RNNs to do the task 
the same as the experiment with α = 0.9/0.8 signaling the 1x/1.5x context respectively (Fig. 7f,g). 
RNNs learned this task well and captured some important features of the behavior, such as the 
regression to the mean effect—bias of the long/short interval towards the mean (Fig. 7g,h). 
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Similar to the motor trajectory task, RNNs generalize well to the novel α levels with the scaling 

Fig. 7: Neuromodulation of STP captures the experimental results of two sensorimotor timing 
tasks. a, Schematic of RNN used to simulate the interval alternative-forced choice task of Soares et 
al (2016). RNNs are composed of one input for delivering two stimuli with a range of intervals between 
0.6 and 2.4 s (short < 1.5 s; long for > 1.5 s) and two outputs corresponding to a categorical short or 
long decision. RNN were trained only with α = 0.8 for all units. b, Output traces of an example RNN 
for all the intervals tested. c, Sigmoidal fits of the long choice probability for 20 RNNs tested at α = 
0.8. d, Similar to c, but testing the network at α = 0.9 (black), α = 0.7 (purple) and α = 0.8 (red) for 
comparison. e, Summary of the time “point-of-subjective equality” (T1/2) for the sigmoid fits in d. 
Changing α significantly changed the T1/2 (n = 20 RNNs, Kruskal-Wallis test, P<10-10, χ2

(2,57) = 48.0) 
and T1/2 for α = 0.9 and 0.7 is significantly lower and higher than that for α = 0.8 respectively (P = 
0.0007 and P = 003 respectively, by Dunn’s multiple comparison test). f, Schematic of RNN used to 
simulate a Ready-Set-Go task of Remington et al (2018). RNN was composed of one input that 
delivered to events (demarcating the Ready-Set interval) and one output. Based on the context, cued 
by α = 0.9 or α = 0.8, the output unit should generate a duration of 1x or 1.5x the Ready-Set interval, 
the production time. g, Plot of the input (top), target (middle) and output traces for α = 0.9 (left) and α 
= 0.8 for an example RNN. The Gray dashed line denoted the threshold used to quantify the crossing 
time. h, Plot of the production time vs the sensory time for α = 0.9 (black) or α = 0.8 (red) in one 
example RNN. Data were presented as mean ± SD. i, Summary of the average production time for 
novel α levels with trained α shown thicker lines (n = 20 RNNs). Data were presented as mean ± SEM. 
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factor changing smoothly from the trained ones, 1x/1.5x (Fig. 7i). 

DISCUSSION 

Here we have proposed, and provided support, for the hypothesis that neuromodulation of STP 
provides a mechanism for recurrent neural networks to scale their dynamics in both time and 
space. RNNs that incorporated STP and used neuromodulation of STP to signal changes in 
temporal and/or spatial scale exhibited better generalization and performance than RNN models 
in which temporal and spatial scales were signaled by distinct inputs (Extended Data Figure 8) 
or changes in absolute synaptic weights alone (Fig. 5). Furthermore, neuromodulation of STP 
allowed RNNs to capture the results of two experimental studies based on distinct sensorimotor 
timing tasks. While neuromodulation of STP is a well-established experimental phenomenon in 
cortical and subcortical circuits alike (Baimoukhametova et al., 2004; Burke et al., 2018; 
Gonzalez-Islas and Hablitz, 2003; Leyrer-Jackson and Thomas, 2018; Nadim and Bucher, 2014; 
Rush et al., 2002; Seamans et al., 2001a; Tecuapetla et al., 2007), its potential role in 
neurocomputation has not been addressed. Here we establish that it provides novel mechanisms 
for the flexible regulation of neural dynamics and thus of motor control. 

Scaling of neural dynamics through neuromodulation of STP 

Neuromodulators such as dopamine have been implicated in a large range of cognitive functions 
including reinforcement learning (Schultz et al., 1997) and timing. In the case of timing it has been 
proposed that DA may alter clock speed (Buhusi and Meck, 2002; Meck, 1996; Soares et al., 
2016). How DA could alter the speed of the neural clock at the neural level, however, has not 
been addressed. Here we propose that DA’s ability to modulate STP provides a novel mechanism 
to link findings at the neural and cognitive levels. Specifically, in cortical circuits, synaptic 
transmission studies indicate that DA often, but not always, decreases EPSP amplitude through 
synaptic release probability (Burke et al., 2018; Leyrer-Jackson and Thomas, 2018; Seamans et 
al., 2001a; Tritsch and Sabatini, 2012). By incorporating STP into RNNs, and emulating 

dopaminergic inhibition of release probability through decreases in the variable  we were able 
to link cellular-level observations with previous systems and behavioral-level results (Soares et 
al., 2016).  

We emphasize, however, that dopaminergic modulation of synaptic transmission is complex and 
dependent on brain areas and synapse classes (Burke et al., 2018; Leyrer-Jackson and Thomas, 
2018; Nadim and Bucher, 2014). Similarly, at the behavioral and cognitive levels, the effects of 
dopamine are also highly complex. In the motor domain, for example, dopamine has been 
demonstrated to increase movement speed (amplitude) through modulation of the striatal 
activity(Panigrahi et al., 2015), potentially, reflecting differences in dopaminergic neuromodulation 
in different brain areas.  

Temporal versus spatial scaling 

The ability of neuromodulation of STP to control temporal and spatial RNN dynamics was not the 
same. Our results suggest that neuromodulation of STP is better suited to control temporal, 
compared to spatial dynamics. Specifically, the difference between the congruent and incongruent 
conditions in the temporal scaling task was more distinct than in the spatial scaling task (Fig 2), 
as was the difference between the STP and control conditions in which scale was cued by 
synaptic strength in the absence of STP (Fig. 5).  
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Previous studies have also shown that RNNs can account for temporal scale by cueing speed 
through the amplitude of a tonic “speed” input (Hardy et al., 2018; Remington et al., 2018; Saxena 
et al., 2022; Wang et al., 2018; Zhou et al., 2022) or by altering the gain though changes in intrinsic 
excitability (Lindén et al., 2022; Stroud et al., 2018)(an approach similar to our control condition 
in which all RNN weights were scaled). As in the current study, in these previous studies, temporal 
scaling was achieved by creating parallel neural trajectories that flowed at different speeds. We 
also directly compared previous approaches with neuromodulation of STP by implementing the 
input-cued mechanism in RNNs but in the absence of STP. As with the overall modulation of RNN 
weights control (Fig. 5), we found that the generalization and performance for the temporal scaling 
task were significantly worse than that for the α-cued mechanism (Extended Data Fig. 8d) but 
less different for the spatial scaling task (Extended Data Fig. 8e). These results were further 
confirmed by training RNNs at only a single speed level, which demonstrated that 
neuromodulation of STP exhibited better generalization to novel input levels (Extended Data Fig. 
8f,g).  

Dopamine and temporal scaling  

The finding that neuromodulation of STP may serve as a neural mechanism for temporal scaling 
is consistent with the fact that DA has been linked to timing for decades (Fung et al., 2021; Maricq 
and Church, 1983; Meck, 1996; Rammsayer, 1999). However, there is a long-standing debate as 
to the direction of this relationship, which has remained a point of controversy (Simen and Matell, 
2016). Specifically, early reports suggested that neuropharmacologically enhancing dopamine 
levels accelerated the neural clock (Buhusi and Meck, 2002; Lake and Meck, 2013), or rather 
suggested that there was no consistent effect or that DA accelerated the neural clock (Drew et 
al., 2003; Soares et al., 2016). Assuming that DA acts in part by decreasing synaptic strength 
and/or release probability—as in the canonical case of dopaminergic neuromodulation (Burke et 
al., 2018; Seamans et al., 2001a), our results strongly predict that DA should slow the internal 
clock. Specifically, as shown in Fig 2, the congruent relationship between decreasing the 
probability of release and slowing the clock is a significantly better way to temporally scale neural 
dynamics compared to the incongruent case where a neuromodulator such as DA would decrease 
clock speed.  

Overall, our results demonstrated that the incorporation of STP in recurrent neural network 
models, and its neuromodulation, provides a powerful and flexible mechanism to implement 
temporal scaling as well as spatial scaling. These results thus provide a novel hypothesis as to 
why synapses may exhibit STP, and provide a novel computational mechanism for temporal and 
spatial scaling of neural dynamics, and thus of temporal and spatial control of sensorimotor tasks.  
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METHODS 

Recurrent neural network model 

Network architecture and STP As in Fig. 1, RNNs were based on firing-rate units that obeyed 
Dale’s law (N = 200 unless otherwise specified, 80/20% excitatory/inhibitory). RNN dynamics was 
described by the following equations: 

𝜏
𝑑𝒔

𝑑𝑡
= −𝒔 + 𝑾𝒓𝒆𝒄 ∗ (𝒓 · 𝒙 · 𝒖) + 𝑾𝒊𝒏 ∗ 𝑰 +  𝜎𝑵(0,1)√2𝜏          (1) 

𝑑𝒙

𝑑𝑡
= −

1 − 𝒙

𝜏𝑥
+  𝒖 · 𝒙 · 𝒓         (2) 

𝑑𝒖

𝑑𝑡
= −

𝛼 · 𝑼 − 𝒖

𝜏𝑢
+  𝛼 · 𝑼 · (1 − 𝑼) · 𝒓         (3) 

𝑜 = 𝑾𝒐𝒖𝒕 ∗ 𝒓 + 𝒃          (4)  

𝒓 = 𝑟𝑒𝑙𝑢(𝒔)         (5)  

where s ∈ℝN×1 represents the state of the RNN units, and the firing rate vector r corresponds to 

the rectified linear activation function on s. The time constant τ was 100 ms for all units. Win ∈ℝN×2 

and I represent the input weights and external inputs. Each unit received independent Gaussian 

noise N(0,1) with the standard deviation of σ√2𝜏. Unless otherwise specified, σ = 0.01. Wrec ∈ 
ℝN×N is the recurrent weight matrix. Self-connections were absent in the network. Star represents 
the matrix product and the dot represents the element-wise product. 

STP was incorporated as in previous models (Masse et al., 2019; Tsodyks and Markram, 1997). 
Cell-specific STP was implemented in the recurrent units as described in equations (2-3). 
Specifically, the depression variable x and facilitating variable u were shared for all synapses from 
the same pre-synaptic neuron. The vector U corresponds to the initial synaptic release probability 
or baseline percentage of available transmitter released. To implement neuromodulation of STP 
we scaled U with a factor α in the range of 0-1.  

The output (o) of the network is computed linearly from the output weights Wout and r with a 
bias term b. RNNs were implemented and trained in Tensorflow 2.3 based on the code from a 
previous study (Kim et al., 2019). 

Training Networks were trained using adaptive moment estimation stochastic gradient descent 
algorithm (Adam) implemented in Tensorflow2 to minimize the RMSE (root mean square error) 
between network output o and target z:  

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑[𝑜(𝑡) − 𝑧(𝑡)]2

𝑇

𝑡=0

          (6) 
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where T is the total length of a given trial. The target is task-dependent as described below. The 
learning rate was 0.001, and other TensorFlow default values were used. A discretization step of 
10 ms was used for the simulations. 

Wrec was initialized as a random matrix with full connectivity from a Gamma distribution with a 
shape parameter of 0.1 and scale parameter of 1.0, multiplied by a gain factor of 0.5. In order to 
start from an approximately balanced regime the inhibitory weights were multiplied by 4. To 
respect Dale’s law during training a rectified linear operation was applied on Wrec to clip the 
weights at zero and then excitation and inhibition were implemented by multiplying the clipped 
Wrec with a diagonal matrix of 1 and -1 representing excitatory and inhibitory units, respectively. 
Initial Win was drawn from the same Gamma distribution clipped to zero during training the same 
way as Wrec. Wout and b were initialized as zero. 

U was drawn from a Gaussian distribution with a mean of 0.5 and standard deviation of 0.17 
(mean/3) and cut off at 0.001 and 0.99. Unless otherwise specified τx and τu were drawn from a 
Gaussian distribution with a mean 1 s and standard deviation of 0.33 s (mean/3) and cutoff at 0.1 
s and 3 s to ensure numerical stability. α was task-specific as described below. 

Only Win, Wrec, Wout, and b were trained. Parameters were updated after each batch of 16 trials. 
After every 100 batches of training, the network was tested for 20 batches to compute the task 
performance or mean error. For all the spatial and temporal scaling motor trajectory tasks, the 
training was considered a success and stopped when the mean error is lower than 0.02; while for 
the interval-alternative-forced-choice (IAFC) and flexible sensorimotor timing tasks (as described 
below), the criterion would be the task performance being higher than 90% or 98% respectively 
to capture the experimental features. 

Temporal and spatial scaling motor trajectory task 

We trained RNNs to generate a series of complex motor trajectories: 10 handwritten digits from 
0 to 9 (Goudar and Buonomano, 2018) of length 1 s. Unless otherwise specified, each of the ten 
inputs was presented for 0.1 s with onset time randomly drawn from a uniform distribution (0.2-
0.6 s) to signal the digit identity. Following the input, the network evolved freely for a specific 
duration to match the corresponding targets warped temporally and/or spatially according to the 
task requirements. 

Temporal scaling task During training, for the congruent condition, α = 0.9 corresponded to the 
standard target with a duration of 1 s, while α  = 0.8 trials corresponded to the target with a 
duration of 1.5 s uniformly interpolated from the standard one. For the incongruent condition, the 
association between the α and target duration switched, namely 0.9 and 0.8 corresponding to 1.5 
and 1 s, respectively. 

Spatial scaling task During training, for the congruent condition, α = 0.8 corresponded to the 
standard size target with a duration of 1 s, while α = 0.9 corresponded to the larger target also 
with a duration of 1 s but with the amplitude multiplied by a factor of 1.5, namely the size of target 
was 1.5x larger than the standard one. For the incongruent condition, the association between 
the α and target size reversed. 

Joint temporal-spatial scaling task For the joint control of temporal and spatial scales in the 
same network (Fig. 6) we increased N to 400. 50% of recurrent units were used for temporal 
scaling control and the other 50% for spatial scale control (Fig. 6a).  
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To examine joint control the shape (digit identity), and temporal and spatial scale in a single 
network, we randomly divided the 400 recurrent units into three groups: shape (1-200), temporal 
scaling (201-300) and spatial scale (301-400). The temporal and spatial scale control was 
implemented the same way as the joint control network with inputs signaling the digit. We further 
divided the shape group into 10 subgroups corresponding to the 10 digits. For a given digit, we 
set the α in the corresponding subgroup to 0.6 while leaving the α of the rest of the shape group 
being 1 (Fig. 6d).  

Generalization performance 

To see if RNNs trained with two α levels corresponding to two temporal or spatial scales can 
generalize to other scales, we test the RNNs trained with tasks of temporal, spatial scaling, or 
joint control of both with α level in between (interpolation) or outside (extrapolation) of the trained 
levels. Specifically, for trained level α1/α2 (for example, 0.9/0.8 for congruent conditions), we 
tested α = 0.95, 0.925, 0.875, 0.85, 0.825, 0.775 and 0.75. The generalization performance was 
quantified as the RMSE between the output under the testing α and the target zα(t) uniformly 
warped according to the corresponding trained α1/α2. For instance, the length of zα(t), Tα for the 
congruent temporal scaling task with the trained α1 and α2 values corresponding to the digit 
lengths T1 and T2 (1, 1.5 s) would be: 

𝑇α =  𝑇1 +  
𝑇2 − 𝑇1

𝛼1 −  𝛼2
(𝛼 − 𝛼1) 

Therefore  

𝑧α(𝑡) =  𝑧α1(𝑡 ∗
𝑇1

𝑇α
) 

Similarly, the size of zα(t), Sα for the congruent spatial scaling task with the trained α1/α2 
corresponding to the digit size S1/S2 (1.5/1) would be: 

𝑆α =  𝑆2 + 
𝑆1 − 𝑆2

𝛼1 −  𝛼2
(𝛼 − 𝛼2) 

Therefore, 

𝑧α(𝑡) =  𝑧α1(𝑡) ∗
𝑆α

𝑆2
 

The incongruent conditions were modified accordingly.  

TSF, SSF, SSI 

To quantify temporal and spatial scaling of the recurrent dynamics we extended a previously 
described method (Zhou et al., 2020, 2022) to define three measures: Temporal Scaling Factor 
(TSF), Spatial Scaling Factor (SSF), and the scaling-specific index (SSI). As in Fig. 6d, for two 

given population trajectories: r1(N×T1) and r2 (N×T2) with T1<T2, the goal of the algorithm is to 
find the best temporal and spatial scaling factors, by which warping r1 gives the best match to r2. 
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Specifically, we searched among a range of temporal scaling factors (tsf, 0.5-2), and spatial 
scaling factors (ssf, 0.5-2). We then warped r1 temporally and spatially as follows: 

𝒓𝟏𝑤𝑎𝑟𝑝(𝑡) = {
𝒓𝟏 (

𝑡

𝑡𝑠𝑓
) ∗ 𝑠𝑠𝑓,    𝑡 ≤ 𝑇1 ∗ 𝑡𝑠𝑓 

𝑚𝑒𝑎𝑛(𝒓𝟏) ∗ 𝑠𝑠𝑓, 𝑡 > 𝑇1 ∗ 𝑡𝑠𝑓 

 

where the mean() function is applied to each unit. 

To compare with r1warp(t), we extended the r2 dynamics as follows: 

𝒓𝟐′(𝑡) = {
𝒓𝟐(𝑡),    𝑡 ≤ 𝑇2 

𝑚𝑒𝑎𝑛(𝒓𝟐), 𝑡 > 𝑇2 
 

We then obtained the maximal length, Tmax between T2 and T1*tsf: 

𝑇𝑚𝑎𝑥 = max (𝑇2, 𝑇1 ∗ 𝑡𝑠𝑓) 

We next compute the mean Euclidian distance d(ssf,tsf) between r1warp(t) and r2’(t) for each pair 
of ssf and tsf as: 

𝑑(𝑠𝑠𝑓, 𝑡𝑠𝑓) =  
1

𝑇𝑚𝑎𝑥
∑ √(𝒓𝟏𝑤𝑎𝑟𝑝(𝑡) − 𝒓𝟐′(𝑡))2

𝑇𝑚𝑎𝑥

𝑡=0

 

Then the SSF and TSF were defined as the tsf and ssf that gives the minimal d(ssf,tsf): 

𝑆𝑆𝐹, 𝑇𝑆𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠𝑠𝑓,𝑡𝑠𝑓(𝑑(𝑠𝑠𝑓, 𝑡𝑠𝑓)) 

Finally, we defined the SSI as: 

𝑆𝑆𝐼 =
𝑑(𝑆𝑆𝐹, 𝑇𝑆𝐹)

1
𝑇𝑚𝑎𝑥

∑ √(𝑚𝑒𝑎𝑛(𝒓𝟐′) −  𝒓𝟐′(𝑡))
2𝑇𝑚𝑎𝑥

𝑡=0

 

Intuitively, SSI provides a measure of how well the relation from r1 to r2 can be explained by 
temporal and spatial scaling profile, namely the smaller the SSI, the better r2 can be fitted by 
warping r1 temporally and spatially. 

Velocity drive analysis 

To understand the transitions between trajectories at different  levels we started from the 
trajectories at α = 0.9 (s1) and α = 0.8 (s2)(Fig 4a). For the spatial scaling task, s1 and s2 naturally 
have the same length, while for the temporal scaling task, we uniformly subsampled the longer 
one to the same length as the short one to ensure s1 and s2 have the same length. For a given 
time point on s2 and its corresponding time point on s1 with direction p12 from s2 to s1, there 
were velocity vectors v2 and v1 respectively. Generally, v2 can be decomposed into the recurrent 
component, rec2, and decay component d2. we then sought to compute the angle between rec2 
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and p12 or the angle between rec2 and v1 at each corresponding time point on s1 and s2. Finally 
mean angle across time was obtained for comparison. 

Subspace angle analysis 

In Fig. 4d-f, we computed the angle between the subspace of the recurrent dynamics at different 
α levels with the subspace of the output. Specifically, for a given trajectory r, we performed the 
PCA analysis, then the recurrent space was expanded by the first n principal components. The 
output space was expanded by the learned output weights which led to a 2-dimensional space. 
Finally, the angle between the recurrent space and output space is computed by the Matlab 
function subspace() between these two spaces. 

RNNs without STP 

To study whether STP affects the training and generalization in the temporal or spatial scaling 
tasks (Fig. 5), we modified the standard congruent temporal or spatial scaling task by removing 
the STP dynamics during training and testing. Specifically, we trained and tested RNNs with x = 
1 (equation 2) and u = αU (equation 3) during the whole trial, and other conditions were the same 
as the standard temporal or spatial scaling task. 

RNNs with an Input-cued-scale approach 

To compare the neuromodulation of STP strategy to the strategy of using the input magnitude of 
an input to cue different scales (Extended Data Fig. 8) 23: 1) we removed STP by fixing the 
variable u at 0.85*U across whole trials; and 2) added an extra input continuously presented 
across whole trials, the magnitude of which, cued either the length of the trials in the temporal 
scaling task or the size of the digit in the spatial scaling task. Specifically, 0.9/0.8 corresponded 
to either 1/1.5 s or 1.5x/1x size respectively. Generalization performance was tested similarly to 
the α-cued-scale model. To study the natural generalization of the input-cued-scale model, we 
also trained the RNNs with a single input magnitude level and tested them with different novel 
levels. 

Simulations of the experimental sensorimotor timing task 

To test the potential that modulating α as a universal mechanism for controlling temporal and 
spatial scale (Fig. 7), we simulated two experimental studies of flexible sensorimotor timing tasks 
(Remington et al., 2018; Soares et al., 2016). 

IAFC task Same as the experimental conditions on rats for the interval-alternative-forced-choice 
(IAFC) task (Soares et al., 2016), RNNs were composed of one input for delivering two stimuli 
lasting 150 ms with a range of intervals, 0.6, 1.05, 1.26,1.38,1.62,1.74,1.95, 2.4 s (short if interval 
< 1.5 s and long if > 1.5 s) and two outputs corresponding to short or long intervals respectively. 
The target of the output corresponding to the input interval was set to 1 for a response period of 
200 ms right after the second stimulus offset and zeros elsewhere; the other output target was 
zeros everywhere. The decision was made based on the mean activity during the response period 
for the two outputs in a winner-take-all manner and performance was defined as the percentage 
of the correct decision trials. RNNs were trained with α = 0.8 for all units and tested with 0.9 and 
0.7 to simulate the effect of optogenetic inactivation or activation of dopamine activity respectively. 
We set σ (in equation 1) to 1 to match the noise level of the experiments. Same as the experiment, 
we fitted the long choice probability by a sigmoid function: 
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𝑃 = 𝐴
exp (

𝑦 − 𝑏𝑖𝑎𝑠
𝑠𝑙𝑜𝑝𝑒

)

1 + exp (
𝑖𝑛𝑡 − 𝑏𝑖𝑎𝑠

𝑠𝑙𝑜𝑝𝑒
)

+ 𝑂𝑓𝑓𝑠𝑒𝑡 

where y is the input intervals. 

Flexible sensorimotor timing task For the simulation of the Ready-Set-Go task (Remington et 
al., 2018), the input of the RNN delivered two stimuli lasting 100 ms with the interval from the pool 
of 7 intervals uniformly spaced in 0.5-1s (sensory time, ts). Based on the context cued by α = 0.9 
or α = 0.8, the output unit should generate a linear ramp (0-1) crossing threshold (0.75) at 1× or 
1.5× as input intervals (the target time tt) since the offset of the second stimulus respectively 
(production time, tp). Same as the experiments, we defined one trial with tp as correct if the error 
= |tp - tt| was smaller than 0.2* tp + 0.025 s. Again performance was defined as the percentage of 
the correct trials. 

 

Data and codes availability  

All data are available in the main text or supplementary materials. Codes used for the simulations 
in this paper will be available at (https://github.com/ShanglinZhou/Temporal_Spatial_Scale_STP).  
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Supporting information:  

 

  

Extended Data Fig. 1: Example output traces for the incongruent cases in temporal and spatial 
tasks. a, Output traces of an example RNN at α = 0.9 (top) and α = 0.8 (bottom) for the incongruent 
cases in temporal scaling task. b, Same as a but in spatial scaling task. ). c, Comparison of the number 
of training epochs for RNNs for congruent and incongruent settings in temporal scaling task (left) and 
spatial scaling task right (n = 20 RNNs; P < 10-7, P < 10-6,  two-sided Wilcoxon rank sum test 
respectivly). Boxplot: central lines, median; bottom and top edges, lower and upper quartiles; whiskers, 
extremes; red cross, outliers. 
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Extended Data Fig. 2: Learning temporal and spatial scaling tasks is robust across a diverse 
range of hyperparameters. The number of training epochs needed to reach the same success 
criterion in temporal (top) and spatial (bottom) scaling tasks for a diverse range of hyperparameters: 
mean of τd and τx in the STP model (a,b), pair of α level used for different scales (c,d), and scale factor 
between the two scales (e,f). 
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Extended Data Fig. 3: Shuffling time or units both disrupted the temporal-spatial profile of 
recurrent dynamics. a, comparison of average TSF across 20 RNNs between control and time-
shuffled congruent case in temporal (left) and spatial (right) scaling task. b, Same as a but for SSF. c, 
Same as a but for SSI. d,e,f, Same as a,b,c but for shuffling units but keeping the temporal structure 
of each unit. In all the conditions, shuffling either time or units significantly disrupted the temporal-
spatial profile (n = 10 digits; P = 0.002, two-sided Wilcoxon signed rank test for all conditions). 
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Extended Data Fig. 4: Synaptic efficacy dynamics exhibited a similar temporal-spatial profile 
as the activity dynamics. a, Normalized synaptic efficacy (x*u in STP) at α = 0.9 (top) and α = 0.8 
(bottom) sorted according to the peak latency at α = 0.9 for congruent (left) and incongruent (right) 
temporal scaling task. The Red dashed line denoted the time point of 0.5 s. b, Same as a but for 
spatial scaling task. c, Plot of the first three principal components of synaptic efficacy of α = 0.9 (black) 
and α = 0.8 (dark red) for congruent (left) and incongruent (right) cases in temporal scaling task. Color 
codes the time. d, Same as c but for spatial scaling task. e, comparison of congruent and incongruent 
cases for average TSF across 20 RNNs in the temporal (left) and spatial (right) scaling task (n = 10 
digits; P = 0.002 and 1, two-sided Wilcoxon signed rank test for temporal and spatial scaling task 
respectively). f, Same as e but for SSF (n = 10 digits; P = 0.002 and 0.152, two-sided Wilcoxon signed 
rank test for temporal and spatial scaling task respectively). g, Same as e but for SSI (n = 10 digits; P 
= 0.002, two-sided Wilcoxon signed rank test for both temporal and spatial scaling task). Boxplot: 
central lines, median; bottom and top edges, lower and upper quartiles; whiskers, extremes; red cross, 
outliers. 
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Extended Data Fig. 5: Angle between recurrent and output space is robust across a diverse 
range of recurrent PC numbers. a, Average angle between output space and recurrent space 
expanded by different number of PCs at α = 0.9 (black) and 0.8 (red) for congruent (left) and 
incongruent (right) cases in temporal scaling task. b, Same as a but for spatial scaling task. 
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Extended Data Fig. 6: Different dynamical profiles between RNNs with input or α signaling 
digits in joint temporal-spatial scaling task. a, PCA plot of the recurrent dynamics in five example 
RNNs with input (top) and α (bottom) signaling digit. Color codes digits. b, Cross-digit population 
correlation in the five example RNNs in a with input (top) and α (bottom) signaling digit. c, Comparison 
of the average cross-digit correlation in b between RNNs with input and α signaling digits (n = 20 
RNNs; P < 10-7, two-sided Wilcoxon rank sum test). Boxplot: central lines, median; bottom and top 
edges, lower and upper quartiles; whiskers, extremes; red cross, outliers. 
. 
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Extended Data Fig. 7: RNNs trained with a single α level generalize congruently to novel levels. 
a, Schematic of RNNs trained with single α = 0.8 for all units with a target of the short-small digit. b, 
Example output traces of digit 0 at α = 0.7 and 0.9 for all units with α = 0.8 shown for comparison. c, 
Summary of the distance for different α. Decreasing α significantly decreases the distance (n = 20 
RNNs, Kruskal-Wallis test, P<10-11, χ2

(2,57) = 52.5) and distance for α = 0.9 and 0.7 is significantly 
higher and lower than that for α = 0.8 respectively (P = 0.0009 for both, by Dunn’s multiple comparison 
test). d, Same as c but for modulating α only for excitatory units. Decreasing α significantly decrease 
the distance (n = 20 RNNs, Kruskal-Wallis test, P<10-11, χ2

(2,57) = 52.5) and distance for α = 0.9 and 
0.7 is significantly higher and lower than that for α = 0.8 respectively (P = 0.0009 for both, by Dunn’s 
multiple comparison test). e, Same as c but for modulating α only for inhibitory units. Decreasing α 
significantly increases the distance (n = 20 RNNs, Kruskal-Wallis test, P<1061, χ2

(2,57) = 31.1) and 
distance for α = 0.9 and 0.7 is lower and higher than that for α = 0.8 respectively (P = 0.076 and 0.003 
respectively by Dunn’s multiple comparison test). 
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Extended Data Fig. 8: RNNs trained with input magnitude cueing the scales. a, Schematic of 
RNNs trained with an extra input Is continusely presented during the whole trial to cue either the 
temporal or spatial scales. b,Simialr to the congruent settings for the standard α-cued-scale approach, 
the ls = 0.9/0.8 correspond to the short/long duration respectively. c, Simialr to b but for the spatial 
scaling task. d, Comparision of the generalization performance for the two approach: input-cued-scale 
(gray) and α-cued-scale (green) (n = 20 RNNs; two-way ANOVA with mixed-effect design, F1,38  = 
885.2, P < 10-27). e, Same as d but for the spatial scaling tasks (n = 20 RNNs; two-way ANOVA with 
mixed-effect design, F1,38  = 47.1, P < 10-7). f, Schematic of RNN with input-cued-scale approach but 
trained with single input magnitude level (Is = 0.8). g, The output distance of RNNs trained as f and 
tested with Is = 0.9 and 0.7 (midlle) or with Is = 1.1 and 0.5 for a wider range (right). Resutls for the α-
cued-scale approach are presented for comparison (left). The distance median are shown on top of 
each codintions. 
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